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Weak-value amplification of the fast-light effect in rubidium vapor
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We use weak-value amplification to enhance the polarization-sensitive fast-light effect from induced Raman
absorption in hot rubidium vapor. We experimentally demonstrate that projecting the output signal into an
appropriate polarization state enables a pulse advancement of 4.2 μs, which is more than 15 times larger than
that naturally caused by dispersion. More significantly, we show that combining weak-value amplification
with the dispersive response of an atomic system provides a clear advantage in terms of the maximum pulse
advance achievable for a given value of loss. This technique has potential applications for designing novel
quantum-information-processing gates and optical buffers for telecommunication systems.
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I. INTRODUCTION

Due to Kramers-Kronig relations, a sharp change in the
absorption or transmission of an optical medium results in a
large modification of the group index [1]. Controlling the group
velocity using slow and fast light is an enabling technology
with many applications in photonics [2–5]. Additionally, fast
light provides a unique test bed for studying the fundamental
physics behind superluminal pulse propagation. While slow
light can be achieved with no appreciable loss using elec-
tromagnetically induced transparency (EIT) [6], one needs to
operate close to the center of an absorption line to achieve a
negative group index with a large magnitude [7]. However,
the large amount of absorption often limits the applications
of resonant effects, making it preferable to employ slow-
or fast-light mechanisms based on off-resonant dispersion or
resonant optical gain lines [8–10].

Here, we propose an alternative approach that is based on
modifying a time advance by using weak values. A weak
measurement is a generalized form of quantum measure-
ments, in which a weak unitary interaction is followed by a
strong projective measurement [11,12]. Unlike the standard
measurements, the result of a weak measurement, known
as a weak value, can be beyond the range of eigenvalues
of the measured operator [13–15]. This property, known as
weak-value amplification (WVA), has been used before to
sensitively measure a variety of effects, such as a transverse
beam deflection [16–19], phase [20], velocity [21], and time
delay [22]. Further, it has been suggested that the weak-value
amplification can be used to enhance nonlinear optical effects
in the few-photon regime [23].

In this work, we amplify the negative time delay associated
with the so-called superluminal pulse propagation of an optical
pulse in hot rubidium vapor. The fast-light effect is caused
by an induced Raman absorption profile of the rubidium
hyperfine structure in a pump-probe nonlinear interaction. Due
to the polarization sensitivity of this effect, the polarization
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of an optical pulse is weakly coupled with its arrival time.
By appropriately preparing and postselecting the polarization
states of the pulse, we can effectively engineer the dispersion
properties of the medium [22,24], and thus amplify the weak
coupling between polarization and arrival time. Using this
technique, we were able to advance the peak of an optical
pulse by an amount that is up to 15 times larger than the
original fast-light advancement.

The fast-light effect due to absorption and the enhancement
due to weak-value amplification are both lossy processes.
Here, we study how the achieved temporal advancement scales
as a function of loss due to atomic absorption and compare it
to the scaling as a function of loss due to postselection in
WVA. Remarkably, we find that for a given value of loss,
an optimized combination of both these processes provides a
larger time advance than that obtained by just increasing the
atomic absorption itself. In light of the ongoing debate on the
usefulness of WVA [25–30], we find this result to be both
timely and significant.

II. TUNABLE GROUP DELAY FROM ATOMIC RESPONSE

In a dispersive medium the group velocity and the phase
velocity are not the same. The group velocity and the group
index can be calculated from the standard results

vg = c/ng, ng = n + ω
dn

dω
. (1)

Slow and fast light correspond to the situations where ng � 1
and ng < 1, respectively. Due to the Kramers-Kronig relations,
a sharp change in the absorption coefficient can lead to a
substantial change in the group index. A large pulse advance
in fast light can be achieved by operating in a wavelength
close to the center of an absorption line (see Fig. 1). However,
the large amount of loss in this region limits the amount of
maximum negative delay that can be achieved in practice.

We use a nonlinear process to induce a polarization-
sensitive absorption line in an atomic vapor. Consider a three-
level atomic � system, where levels 1 and 2 are connected
via the signal field 1

2�se
−i(ωs t−kz) + c.c. and levels 2 and 3 are
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FIG. 1. Top panel: The absorption profile of a Lorentzian
lineshape. Middle panel: The refractive index associated with the
absorption line can be calculated using the Kramers-Kronig relations.
Bottom panel: The group index for the same line. The horizontal axis
for all the panels are identical and denote the frequency detuning
from resonance, normalized by the line width of the Lorentzian line
shape.

connected by a strong coupling field 1
2�ce

−i(ωct−kz) + c.c. The
detunings are defined as �s = (ω2 − ω1) − ωs,�c = (ω2 −
ω3) − ωc and δ = �s − �c. In this case the susceptibility at
the signal frequency can be calculated as

χ (�,δ,�c) = β
δ − iγ

(δ − iγ )(� − i
/2) − |�c|2/4
. (2)

Here, 
 and γ are the excited-state spontaneous decay
rate and the ground-state decoherence rates, respectively. The
factor β is equal to Nμ2/�ε0, where N is the number density
and μ is the transition dipole moment between levels 1 and 2.
This formula can explain many interesting results, including
the electromagnetically induced absorption (EIA), that can be
achieved for a large single-photon detuning.

For the case where � � 
, the expression for susceptibility
can be approximated by a Lorentzian line shape

χ (� � 
) = β
|�c|2
4�2

δ′ + iγ ′

δ′2 + γ ′2 . (3)

In the above δ′ = δ − δ0,γ
′ = γ + γ0, where δ0 =

|�c|2�/(4�2 + 
2) and γ0 = |�c|2
/(8�2 + 2
2).
The calculation above uses scalar fields to find the sus-

ceptibility and thus far we have neglected any dependence
of the atomic response to the polarization of light. In a
physical system, however, one needs to take into account
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FIG. 2. Left panel: Schematic diagram of a three-level � system.
Right panel: The hyperfine energy levels of 85Rb.

the vectorial nature of the electric fields in the coupling and
the signal beams. For vector fields, the atomic selection rules
set the energy levels that participate in the interaction, and
the realization of the three-level system specified above may
require a relation between the polarization states of coupling
and signal beams. For the case of Rb atoms considered in
this paper, we can realize the � system described above
when the polarization of the signal beam is orthogonal to
that of the coupling beam [31,32]. The energy diagram for
the levels involved in our experiment are depicted in Fig. 2.
In this configuration, the polarization component of the signal
that is orthogonal to the polarization of the coupling beam
experiences a narrow absorption line and consequently an
advancement in pulse travel time with respect to propagation
in vacuum. In contrast, the component of the signal polarized
parallel to the coupling beam propagates through the medium
with nearly no change in its group velocity.

When the signal field is composed of both polarization com-
ponents, the differential time advance can be enhanced by per-
forming a projective measurement in the polarization [22,24].
The modification of a time delay obtained in this manner
is in fact an interference effect that can be fully understood
using the classical theory of electromagnetism [33]. However,
expressing this phenomenon within the weak-value formalism
leads to a simpler and more elegant description that is easier
to understand.

III. WEAK-VALUE AMPLIFICATION
OF THE TIME ADVANCE

We cast the propagation of an optical pulse through the
atomic vapor in the language of quantum state measurement.
The polarization and the temporal state of the signal beam
before the cell can be described as

|�in〉 = 1√
T + 1

(|H 〉 +
√

T |V 〉) ⊗ |f (t)〉e−iω0t , (4)

where we have assumed a quasimonochromatic single optical
mode with a pulse shape described by |f (t)〉. The horizontal
and vertical polarization states are shown as |H 〉 and |V 〉
respectively. Since the polarization component |H 〉 attenuates
upon propagation, it is initially weighted by a larger factor to
precompensate for the effect of loss. The power transmission
efficiency of propagation through the cell for a horizontally
polarized signal beam is denoted by T . We now consider a case
where the coupling beam is polarized in the vertical direction.
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In this situation, the state of the signal beam in the output can
be described as [6,34]

|�out〉 =
√

T

T + 1
[|H 〉|f (t + t0)〉 + |V 〉|f (t)〉]e−iω0t . (5)

Here, t0 = −(ng − 1)L
c

is the absolute value of the group delay
for a propagation length L. We have dropped the common
delay time between the two polarization states in order to
simplify the notation. It is seen that horizontal polarization
experiences attenuation and an advancement in time compared
to the vertical component of the field. Additionally, we
have assumed the optical path lengths in the medium for
the two polarization components are equal. This results in
the convenient phase difference of zero between the two
polarization components in the output. In practice, a nonzero
phase difference can always be pre-compensated by changing
the polarization state of the input signal beam.

We use the weak value formalism for the case where
the advancement time t0 is much smaller than the temporal
duration of the pulse f (t). Although our formalism closely
follows that of Ref. [22], the large amount of time advance
and the tunability provided by the atomic system in our
experiment offers a degree of control absent from previous
realizations. In the following section we provide a comparison
of the loss vs time advance from WVA to the one obtained
from the Kramers-Kronig relations. This analysis provides
theoretical evidence for the efficacy of combining weak value
amplification from the natural dispersive time advance from
atomic response.

Assuming a Gaussian pulse shape, a postselection in the
linear polarization state with an angle θ with respect to the
frame of the experiment results in

|�PS〉 ≈
√

T

T + 1
(cos θ |H 〉 + sin θ |V 〉)

⊗|f (t + Awt0)〉e−iω0t . (6)

Here, �PS is the polarization and the temporal state of the
postselected beam.

The weak value Aw corresponds to the temporal shift of the
optical pulse and can be calculated using the formula

Aw = 〈�θ |Â|�in〉
〈�θ |�in〉 = cos θ

sin θ + cos θ
, (7)

where |�θ 〉 is the postselected polarization state and the
measurement operator is Â = |H 〉〈H |. It can be seen in Fig. 3
that choosing the postselection angle θ close to 45◦ results in a
large amplification factor Aw. More interestingly, it is possible
to achieve a negative amplification and hence convert a time
delay to a time advance and vice versa.

IV. EXPERIMENTAL IMPLEMENTATION

We realize the Raman absorption profile using warm atomic
rubidium vapor. A sketch of the experimental setup is depicted
in Fig. 3. The beam from a 795-nm narrow-line-width tunable
diode laser is passed through a tapered-fiber amplifier to obtain
a 10-mW coupling beam. The signal beam is obtained by
frequency-shifting part of the the laser beam by 3.035 GHz by
double passing it through a tunable acousto-optic modulator.
This separation corresponds to the ground-state hyperfine
splitting of 85Rb. The power of the signal beam is set to
100 μW.

The wavelength of the diode laser is tuned to have the signal
beam detuned by 1.6 GHz to the blue of with the 5 2S1/2 F = 3
to 5 2P 1/2 transition. The coupling beam was therefore detuned
to the blue of 5 2S1/2 F = 2 to 5 2P 1/2 transition. The coupling
and the signal beams have Gaussian transverse profiles with
1/e2 diameters of 3 and 1.8 mm, respectively. The coupling
beam is prepared in the vertical polarization state and the
signal beam is prepared in the diagonal polarization state.
The two beam are then combined in a colinear fashion with
a nonpolarizing beam splitter and are injected to an 8-cm
rubidium cell.

The cell is heated using strip heaters inside a teflon tube
enclosed by antireflection-coated windows at each end to
achieve temperature stability. The cell is shielded from stray
magnetic fields by a Mu-metal tubing. The vapor cell contains
both rubidium isotopes in their natural abundance. In addition,
we also have 20 Torr neon in the cell, which acts as a buffer
gas. The temperature of the vapor cell is about 80 ◦C, resulting
in a number density of about 1012 cm−3. We use an atomic
prism to filter out the coupling beam after the cell [35]. This
prism contains isotopically pure 87Rb and is heated to 100 ◦C
to achieve a large dispersion (dn/dλ). The coupling and the
signal beams propagate at different angles once they exit the
prism.

FIG. 3. Schematic of the experimental setup. The continuous wave laser beam is divided to two copies using a nonpolarizing beam
splitter. The signal is frequency shifted using an acousto-optic modulator (AOM1) in double path (the figure shows a single path to simplify
visualization). AOM2 is used to shape the signal beam to Gaussian pulses. The polarization state of the pump and the signal are controlled
using wave plates. The postselection is done using a polarizer and a fast detector. The output photocurrent is analyzed by an oscilloscope.
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FIG. 4. Power transmission as a function of frequency detuning
from Raman absorption. The blue curve presents the experimental
data and the red curves shows the theoretical fit assuming a Lorentzian
(with 2γ = 34 kHz) line shape for the susceptibility.

Figure 4 shows the measured power transmission of the
signal beam as a function of detuning δ′. This graph represents
a typical result of the measurement of absorption. We have
observed that the amount of absorption at the center of the dip
varies, resulting in a transmission in the range T ≈ 0.45–0.55
during the course of the experiment. We primarily attribute
this change to fluctuations of the temperature of atomic prism.
It can be seen that the measured transmission is in good
agreement with a Lorentzian fit for the susceptibility. This
observation verifies the assumption that the effect of Doppler
broadening on susceptibility can be neglected for the case of
copropagating coupling and signal beams [6,36].

We find the line width for the fitted Lorentzian profile in
Fig. 4 to be 2γ = 34 kHz. The fitted susceptibility profile can
be used to find the group index for operation at the center of
the line width by using the Kramers-Kronig relations. We use
Eq. (13) (derived in the next section) to find ng = −7.5 × 104

for operation at the the center of the absorption line. In our
experiment, however, we use a nonzero two-photon detuning
δ to realize a small fractional delay for a Gaussian pulse.
We use an acousto-optic modulator before the rubidium cell
to carve Gaussian pulses with a FWHM width of 20 μs
from the signal beam. Upon propagation through the cell, the
signal beam experiences the differential group delay caused
by the copropagating coupling beam. We separate the signal
beam from the coupling beam by using the atomic prism and
then pass the signal beam through a polarizer. The output
pulses from the polarizer are finally detected with a fast
photodetector diode. We set the postselection state by setting
the angle of the polarizer’s axis. The top panel of Fig. 5
presents measured optical power as a function of time for four
different postselection angles. We measure the time of arrival
of the pulse by fitting a Gaussian wave form to the measured
pulse and finding the position of its center.The comparison
of the measured optical power for the horizontal and vertical
polarizations give a value of t0 = 0.28 μs, corresponding to a
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FIG. 5. Top: Measured optical power as a function of time for
|H 〉,|V 〉, and for the output corresponding to the postselection angles
θ = −40◦ and θ = −50◦. The origin of time is set to the center of
the pulse for the vertical polarization state. The markers are added to
aid visualization and do not represent the data points. Bottom: The
amplification factor as a function of postselection angle. The blue
curve shows theory prediction from Eq. (7). The amplification factor
is inferred from data by performing a Gaussian fit. The error bars
correspond to the 95% confidence interval.

group index of ng = −t0c/L ≈ −1.0 × 103 and a fractional
pulse delay of 1.4%.

The value of amplification factor as a function of posts-
election angle from the experiment is plotted in the bottom
panel of Fig. 5. It can be seen that the delay gets drastically
amplified as θ approaches −45◦, and experiences a sign flip as
it goes through it. The increase of loss in the proximity of θ =
−45◦ eventually limits the maximum achievable amplification.
The largest group delay measured in our experiment is
equal to 4.2 μs, which corresponds to an effective group
index of ng = −Awt0c/L ≈ −1.6 × 104 and a fractional
pulse delay of 21%. It is evident that the experimental
data points are in reasonable agreement with the theoretical
prediction. We attribute the discrepancies between the theory
line and the experimental results to the polarization instability
of the signal beam after propagation through the rubidium cell.
The instability is primarily caused by stray magnetic fields and
temperature variations of the cell. Note that the theory curve is
based on Eq. (7), which predicts a singularity for θ = −45◦.
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In practice, however, the maximum achievable amplification
factor is limited as by the pulse width, and a more detailed
analysis of the amplification factor has to take into account the
effect of higher order terms in the weak-value expansion [37].

V. THE SCALING OF GROUP DELAY WITH LOSS

The analysis and the experimental results above suggest that
the WVA can be combined with the dispersive response of an
atomic system to provide extra control over the value of group
delay. However, to get an appreciable amplification factor one
needs to postselect on a state that is nearly orthogonal to the
input state. In this situation, the efficiency of the process is
significantly reduced. This is, in fact, a universal property
associated with weak values and the usefulness of WVA in
the presence of this additional loss has been a topic of debate
recently [25–30].

Before analyzing the effect of loss from postselection, we
investigate the relation between loss and group delay from
the atomic response. Using the susceptibility in Eq. (3) and
assuming n ≈ 1 + 1

2χ we get

n = Re [n] + i Im [n] = 1 + β
|�c|2
8�2

δ′ + iγ ′

δ′2 + γ ′2 . (8)

The group delay can be calculated using the real part of the
group index. Assuming � � 
, and � � |�c| we have

ng|δ′=0 = 1 + β
|�c|2
8�2

ω

γ ′2 . (9)

The group delay is related to the group index as Lng

c
. The value

of group delay includes the propagation time in vacuum. The
differential time advance can be found as

t0 = β
L

c

|�c|2
8�2

ω

γ ′2 . (10)

We find the value of absorption at the center of the Lorentzian
line as

α = ω

c
Im [n]

∣∣∣
δ′=0

= β

8c

|�c|2
�2

ω

γ ′ . (11)

Subsequently, the power transmission efficiency is

T = exp (−2αL) = exp (−2γ ′t0). (12)

It is evident that increasing the absolute value of time advance
via increasing the nonlinear interaction results in an exponen-
tial decrease in the transmission efficiency. Consequently, the
group delay can be written as

tatom = − ln T

2γ ′ . (13)

Equation (13) calculates the maximum amount of time advance
that can be achieved from the atomic response for a given value
of transmission efficiency.

The alternative strategy is to initially achieve a time advance
t̃0 from the atomic response, at the cost of a reduction in the
transmission efficiency for one of the polarization components
to T̃ . We then employ the WVA amplification to increase the
amount of group delay at the cost of a further increase in the

10 10 10 100
0

9

6

Power Transmission Efficiency

0.04 0.08

1.7

FIG. 6. Maximum achievable time advance as a function of
transmission efficiency (calculated from theory).

loss. The input beam in this case is described by the state

|�in〉 = 1√
1 + T̃

(|H 〉 +
√

T̃ |V 〉) ⊗ |f (t)〉e−iω0t , (14)

and the state after the postselection is equal to

|�PS〉 =
√

T̃

1 + T̃
(cos θ |H 〉 + sin θ |V 〉)

⊗|f (t + Awt̃0)〉e−iω0t . (15)

The total transmission efficiency for this strategy can be
calculated by adding the postselection loss

T = |〈�PS |�PS〉|2 =
˜2T

1 + T̃
sin2

(
θ + π

4

)
. (16)

Similarly, the total time advance is equal to the contribution
from the atomic response t̃0, amplified by the postselection

t0 = Awt̃0 = cos θ

sin θ + cos θ
t̃0. (17)

We use the relation t̃0 = − ln T̃
2γ ′ for the atomic response to find

the total time advance as

t0(θ ) = 1

2γ ′
cos θ

sin θ + cos θ
ln

[
2 sin2

(
θ + π

4

)
T

− 1

]
. (18)

For a given value of loss, the maximum value of achievable
time advance can be calculated by optimizing the absorption
from the atomic response and the loss from postselection

tWVA = 1

2γ ′ max
θ

(
cos θ

sin θ + cos θ
ln

[
2 sin2

(
θ + π

4

)
T

− 1

])
.

(19)

The solutions of Eq. (19) are calculated numerically and
plotted in Fig. 6, along with the solutions for Eq. (13). It is
evident that the WVA procedure provides a slightly lower
time advance for large values of transmission efficiency.
However, as the transmission efficiency decreases, the time
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advance obtained by using WVA grows rapidly, crossing the
advancement obtained from the atomic response at T ≈ 5%.
For all values of T lower than this value, WVA provides a larger
time advance than that obtained from the atomic response
alone. This showcases a clear instance where WVA provides an
advantage for the estimation of a small interaction parameter.

VI. CONCLUSIONS

We have used weak-value amplification to enhance the fast-
light effect caused by electromagnetically induced absorption
in warm rubidium vapor. By appropriately preparing and
postselecting the polarization state of an optical pulse, we
have obtained an advancement in time that is more than 15
times larger than that obtained from the atomic response. The
enhancement from WVA can also be tuned to convert a time
advance into a time delay and vice versa. Additionally, we have

shown that when the total transmission through the system is
lower than 5%, the use of WVA provides a clear enhancement
in the amount of time advance possible. Our technique
provides an additional degree of freedom for controlling the
group velocity of light, which may be useful for designing
optical buffers and quantum-information-processing gates.
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